Course N	No. Course Name	L-T-P - Credits	5 Tnt	Year of roduction
MA20	LINEAR ALGEBRA AND COMPLEX ANALYSIS	3-1-0-4		2016
Prerequis	ite : Nil			
Course O	biectives			
COURSE	OBJECTIVES			
• To	equip the students with methods of solving a general s	system of linear equ	uations.	
• To	familiarize them with the concept of Eigen values and	diagonalization of	a matrix v	which have
ma	ny applications in Engineering.		5 A.	
• To	understand the basic theory of functions of a complex	variable and confo	rmal Trans	sformations.
	ILCINULO	JICA	L.	
Syllabus	I IN IN/ED CI	TV		
Analyticit	y of complex functions-Complex differentiation-C	Conformal mappir	ngs-Comp	lex
integration	-System of linear equations-Eigen value problem		U 1	
U				
Expected	l outcome .			
At the end	of the course students will be able to			
(i) solve an	y given system of linear equations			
(ii) find the	Eigen values of a matrix and how to diagonalize a ma	atrix		
(iii) identif	y analytic functions and Harmonic functions.			
(iv)evaluat	e real definite Integrals as application of Residue Theo	rem		
(v) identify	conformal mappings(vi) find regions that are mapped	under certain Tran	sformation	18
Text Bo	ok:			
Erwin Kr	eyszig: Advanced Engineering Mathematics, 10 th ed. V	Viley		
Referen	ces:			
1.Dennis g	Zill&Patric D Shanahan-A first Course in Complex A	nalysis with Applic	cations-Jon	es&Bartlet
Publishers				
2.B. S. Gre	wal. Higher Engineering Mathematics, Khanna Publis	hers, New Delhi.		
3.Lipschut	z, Linear Algebra,3e (Schaums Series)McGraw Hill E	ducation India 200	5	
4.Complex	variables introduction and applications-second edition	n-Mark.J.Owitz-Ca	mbridge Pi	ublication
	Course Plan			
Module	Contents		Hours	Sem. Exam
	Constant differentiation Tract 1[12,2,12,4]			Marks
	<u>Complex differentiation Text 1[15.5,15.4]</u>		2	
	Limit, continuity and derivative of complex function	18	3	
	Analytic Functions 2014			
	Analytic I unctions		2	
Т	Cauchy-Riemann Equation(Proof of sufficient condi	tion of	_	
-	analyticity & C R Equations in polar form not require	ed)-Laplace's	2	
	Equation			
	1			
	Harmonic functions, Harmonic Conjugate		2	
				15%
	Conformal mapping: Text 1[17.1-17.4]			
	Geometry of Analytic functions Conformal Mapping,		1	
II				
	Mapping $w = z^2$ conformality of $w = e^z$.		2	
				15%

	The mapping $w = z + \frac{1}{z}$		
	Properties of $w = \frac{1}{z}$	1	
	Circles and straight lines, extended complex plane, fixed points		
	Special linear fractional Transformations, Cross Ratio, Cross Ratio property-Mapping of disks and half planes	3	
	Conformal mapping by $w = \sin z \& w = \cos z$	3	
	(Assignment: Application of analytic functions in Engineering)		
	FIRST INTERNAL EXAMINATION		
	Complex Integration. Text 1[14.1-14.4] [15.4&16.1]		
	Definition Complex Line Integrals, First Evaluation Method, Second	2	
	Evaluation Method	2	
	path(without proof). Cauchy's Integral Theorem for Multiply	2	1504
	Connected Domains (without proof)		13%
III	Cauchy's Integral Formula- Derivatives of Analytic	2	
	Functions(without proof)Application of derivative of Analytical	-	
	Functions Taylor and Maclaurin series (without proof). Power series as Taylor		
	series. Practical methods(without proof)	2	
	Laurent's series (without proof)	2	
	Residue Integration Text 1 [16.2-16.4]		15%
	Singularities, Zeros, Poles, Essential singularity, Zeros of analytic	2	
	Tunctions	V	
	Residue Integration Method, Formulas for Residues, Several	4	
	singularities inside the contour Residue Theorem.		
IV			
	Evaluation of Real Integrals (i) Integrals of rational functions of	3	
	$\sin\theta$ and $\cos\theta$ (ii)Integrals of the type $\int f(x)dx$ (Type I, Integrals		
	from 0 to ∞)		
	SECOND INTERNAL EXAMINATION		20%
	Linear system of Equations Text 1(7.3-7.5)		2070
	Linear systems of Equations, Coefficient Matrix, Augmented Matrix	1	
V	Gauss Elimination and back substitution. Elementary row operations		
	Row equivalent systems, Gauss elimination-Three possible cases.	~	
	Row Echelon form and Information from it.	5	

	Linear independence-rank of a matrix	2			
	Vector Space-Dimension-basis-vector space R ³				
	Solution of linear systems, Fundamental theorem of non- homogeneous linear systems(Without proof)-Homogeneous linear systems (Theory only	1			
	Matrix Eigen value Problem Text 1.(8.1,8.3 &8.4)		20%		
VI	Determination of Eigen values and Eigen vectors-Eigen space	3			
	Symmetric, Skew Symmetric and Orthogonal matrices –simple properties (without proof)	2			
	Basis of Eigen vectors- Similar matrices Diagonalization of a matrix- Quadratic forms- Principal axis theorem(without proof)	4			
	(Assignment-Some applications of Eigen values(8.2))				
	END SEMESTER EXAM				

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

2014

Any two questions from each part have to be answered.

Course N	o. Course Name	L-T-P - Credits	Year of
MA 20	Drobobility distributions	310/	
WIA20.	Tronsforms and Numerical Methods	3-1-0-4	2010
Proroquis	Transforms and Numerical Methods		
Course	Nicetives		
	introduce the concent of random variables, probab	vility distributions a	pacific discrete
• 10 and	continuous distributions with practical application	n in various Engine	ering and social
life	situations.	II III Various Eligino	and social
• To	know Laplace and Fourier transforms which has y	wide application in a	ll Engineering
cou	irses.		
• To	enable the students to solve various engineering	problems using num	nerical methods.
Syllabus			
Discrete rat	dom variables and Discrete Probability Distributio	n.	
Continuous	Random variables and Continuous Probability Dist	ribution.	
Fourier tra	nsforms.		
Laplace T	ansforms.		
Numerical	methods-solution of Algebraic and transcendenta	l Equations, Interpol	ation.
Numerica	solution of system of Equations. Numerical	Integration, Nume	erical solution of
ordinary d	fferential equation of First order.		
Expected	outcome.	and accordent of	
(i) Disorr	completion of the course student is expected to h	ave concept of	distributions
(i) Discle	a and Equip transforms and apply them in their	Engineering bronch	
(iii) Lapia	rical methods and their applications in solving E	ngineering problems	1
(III) IIuIII	fical methods and then applications in solving L	ingineering problems	
Text Boo	ks:		
1. Mi	ller and Freund's "Probability and statistics for En	gineers"-Pearson-Ei	ighth Edition.
2. Erv	vin Kreyszig, "Advanced Engineering Mathematic	cs", 10 th edition, Wil	ley, 2015.
Reference	es: Estd		
1. V.	Sundara <mark>pandian, "Probab</mark> ility, Statistics and Queu	ing theory", PHI Le	arning, 2009.
2. C.	Ray Wylie and Louis C. Barrett, "Advanced Engineer	ing Mathematics"-Six	th Edition.
3. Jay	L. Devore, "Probability and Statistics for Engineering	and Science"-Eight E	dition.
4. Ste	ven C. Chapra and Raymond P. Canale, "Numeric	al Methods for Eng	ineers"-Sixth
Ed	tion-Mc Graw Hill.		
	Course Plan		
Modulo	Contents	-	Sem. Exam
Module	Contents	n	Marks
	Discrete Probability Distributions. (Relevant to	opics in	
	section 4.1,4,2,4.4,4.6 Text1)	·	2
	Discrete Random Variables, Probability distribut	ion function,	2
т	Cumulative distribution function.	hution	2
1	Rinomial Distribution Maan and variance	oution.	$\frac{2}{2}$
	Dinomial Distribution-ivical and variance.	tion Doisson	$\frac{2}{2}$
	distribution. Mean and variance		<u> ۲</u>
	distribution-ivican and variance.		15%

	Continuous Probability Distributions. (Relevant topics in		
	section 5.1.5.2.5.5.7 Text1)		
	Continuous Random Variable Probability density function	2	
	Cumulative density function Mean and variance	2	
п	Normal Distribution Mean and variance (without proof)	1	
	Norma Distribution, Mean and variance (without proof).	4	
	Uniform Distribution. Wean and variance.		
	Exponential Distribution, Mean and variance.	2	
			1504
	FIRST INTERNAL EXAMINATION	A	1370
	Fourier Integrals and transforms . (Relevant topics in section	Y.Y	15%
	11.7 11.8 11.9 Tevt ²)	1	1370
	Fourier Integrals Fourier integral theorem (without proof)	3	
III	Fourier Transform and invaria transform	2	
		5	
	Fourier Sine & Cosine Transform, inverse transform.	3	
			150/
	Lonloss transformer (Delevent tenies in section		15%
	Laplace transforms. (Relevant topics in section		
	0.1, 0.2, 0.3, 0.5, 0.0 Text2)		
	Laplace Transforms, linearity, first shifting Theorem.	3	
	Transform of derivative and Integral, Inverse Laplace	4	
IV	transform, Solution of ordinary differential equation using		
	Laplace transform.		
	Unit step function, second shifting theorem.	2	
	Convolution Theorem (without proof).	2	
	Differentiation and Integration of transforms.	2	
	SECOND INTERNAL EXAMINATION		
	Numerical Techniques.(Relevant topics in		20%
	section.19.1,19.2,19.3 Text2)		
	Solution Of equations by Iteration, Newton- Raphson Method.	2	
N 7			
v	Interpolation of Unequal intervals-Lagrange's Interpolation	2	
	formula.		
	Interpolation of Equal intervals-Newton's forward difference	3	
	formula. Newton's Backward difference formula.	-	
	Numerical Techniques. (Relevant topics in section		20%
	19.5,20.1,20.3, 21.1 Text2)		
	Solution to linear System- Gauss Elimination, Gauss Seidal	3	
VI	Iteration Method.		
	Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule.	3	
	Numerical solution of firstorder ODE-Euler method,	3	
	Runge-Kutta Method (fourth order).		
	END SEMESTER EXAM	1	r

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Any two questions from each part have to be answered.

Course	code	Course Name	L-T-P -Credits	Year	r of
				Introdu	iction
MA2	04	Probability, Random Processes and	3-1-0-4	201	6
Prereau	isite: N	Nil			
Course	Object	ives			
• T	o intro	oduces the modern theory of probability	and its applications t	o modelli	ng and
a	nalysis	and processing of random processes and s	signals.		
• T	o learr	n most of the important models of discrete	and continuous probab	oility distri	butions
a	nd wic	lely used models of random processes	such as Poisson proces	sses and I	Markov
c	hains.				
• T	o unde	erstand some basic numerical methods for	interpolation and integr	ation and	also for
fi	inding	roots of equations and solutions of ODEs.			
Syllabus					
Discrete 1	random	variables- Continuous Random variables-Mu	ltiple Random variables.	Random Pro	ocesses-
Autocorre	elation,	Power spectrum-Special Random Processes. 1	Numerical Methods.		
Expect	ed out	come.	· · · · · · · · · · · · · · · · · · ·	,	
At the	end of	the course students would have become	tamiliar with quantify	ng and an	alysing
random	pnend	omena using various models of probabil	ity distributions and ra	andom pro	Cesses.
of the f	ould a	antal numerical methods learned in the or	elation and power spect	to solvo o	vorioty
of math	ematic	al problems by the use of computers when	analytical methods fail	or are diff	ficult
Text B		a problems by the use of computers when	andrytical methods fan		ilcuit.
1. V	.Sunda	arapandian, "Probability, Statistics and Ou	eueing theory". PHI Le	arning, 20	09
2. E	Erwin K	Treyszig, "Advanced Engineering Mathem	atics", 10 th edition, Wil	ey, 2015.	• •
Referen	nces:				
1. H	Iosseinl	Pishro-Nik, "Introduction to Probability, S	Statistics and Random	Processes",	Kappa
R	lesearch	n, 2014 (Also available online at <u>www.probab</u>	ilitycourse.com)		
2. C)liverC.	Ibe, Fundamentalsof Applied Probability and Ran	ndomProcesses"Elsevier,2	2005.	
3. I	veerai	ajan Probability Statistics and Random Proce	a Congage Learning 7 th F	W HIII. Edition	
4. V	valu-Ci	Course Pla	n		
					End
Module		Contents		Hours	Sem.
mouule		contents		nours	Exam Morba
	Discr	ete random variables [Text 1· Relevant	nortions of sections		Marks
	2.1.2	2.2.3. 2.5. 3.3 and 3.4]	portions of sections		
	Discr	ete random variables, probability mass fur	ction, cumulative	3	
	distri	bution function, expected value, mean and	variance.		
Ι	Binor	nial random variable-, mean, variance.			
	Poiss	on random variable, mean, variance, appro	oximation of binomial	2	
	by Pc	isson.		2	
	Distri	bution fitting-binomial and Poisson.		2	150/
	Cont	invoug vondom voriableg [Toyt 1, Dolog	ant nartians of	2	15%
		muous ranuom variables [1ext 1: Kelev ons 2.4.2.5.3.7.3.8 and 3.11]	and portions of		
п	Conti	nuous random variables Probability densi	ty function expected	2	
	value	mean and variance.	ty runction, expected	~	
	Unifo	prm random variable-, mean, variance.		2	15%
L		· · ·		1	

	Exponential random variable-mean, variance, memoryless property.	2	
	Normal random variable-Properties of Normal curve mean, variance		
	(without proof), Use of Normal tables.	3	
	FIRST INTERNAL EXAMINATION		
	Joint distributions [Text 1: Relevant portions of sections 4.1, 4.2,		15%
	4.4 4.7and 4.10]		
III	Joint probability distributions- discrete and continuous, marginal	4	
	distributions, independent random variables.		
	Expectation involving two or more random variables, covariance of	3	
	pairs of random variables.		
	Central limit theorem (without proof).	2	
	Random processes [Text 1: Relevant portions of sections 5.1, 5.2,		15%
	5.3 and 6.2]		
	Random processes, types of random processes,	2	
137	Mean, correlation and covariance functions of random processes, Wide	4	
IV	Sense Stationary (WSS) process, Properties of autocorrelationand auto		
	covariance functions of WSS processes.		
	Power spectral density and its properties.		
		2	
	SECOND INTERNAL EXAMINATION		
	Special random processes [Text 1: Relevant portions of sections		20%
	5.5, 5.5.1, 5.5.2, 5.5.3, 5.5.4) and 5.6]		
	Poisson process-properties, probability distribution of inter arrival	4	
V	times.		
v	Discrete time Markov chain- Transition probability matrix, Chapman	5	
	Kolmogorov theorem (without proof), computation of probability		
	distribution and higher order transition probabilities stationary		
	distribution and inglier order transition probabilities, stationary		
	distribution.		
	distribution. Numerical Methods [Text 2: Relevant portions of sections 19.2,		20%
	distribution and higher order transition productives, stationally distribution. Numerical Methods [Text 2: Relevant portions of sections 19.2, 19.3, 19.5 and 21.1]		20%
	 distribution and higher order transition productives, stationary distribution. Numerical Methods [Text 2: Relevant portions of sections 19.2, 19.3, 19.5 and 21.1] (Derivation of formulae not required in this module) 		20%
	 distribution and inglief order transition productives, stationally distribution. Numerical Methods [Text 2: Relevant portions of sections 19.2, 19.3, 19.5 and 21.1] (Derivation of formulae not required in this module) Finding roots of equations-Newton-Raphson method. 	3	20%
VI	 distribution and higher order mainshon productives, stationary distribution. Numerical Methods [Text 2: Relevant portions of sections 19.2, 19.3, 19.5 and 21.1] (Derivation of formulae not required in this module) Finding roots of equations-Newton-Raphson method. Interpolation-Newton's forward and backward difference formula, 	33	20%
VI	 distribution and inglief order transition productives, stationary distribution. Numerical Methods [Text 2: Relevant portions of sections 19.2, 19.3, 19.5 and 21.1] (Derivation of formulae not required in this module) Finding roots of equations-Newton-Raphson method. Interpolation-Newton's forward and backward difference formula, Lagrange's interpolation method. 	3 3	20%
VI	distribution and inglief order mainfrom production productions, stationally distribution. Numerical Methods [Text 2: Relevant portions of sections 19.2, 19.3, 19.5 and 21.1] (Derivation of formulae not required in this module) Finding roots of equations-Newton-Raphson method. Interpolation-Newton's forward and backward difference formula, Lagrange's interpolation method. Numerical Integration-trapezoidal rule, Simpson's 1/3rd rule.	3 3 3	20%
VI	 distribution and higher order transition productives, stationary distribution. Numerical Methods [Text 2: Relevant portions of sections 19.2, 19.3, 19.5 and 21.1] (Derivation of formulae not required in this module) Finding roots of equations-Newton-Raphson method. Interpolation-Newton's forward and backward difference formula, Lagrange's interpolation method. Numerical Integration-trapezoidal rule, Simpson's 1/3rd rule. Numerical solution of first order ODE-Euler method, Runge-Kutta 	3 3 3 3	20%
VI	distribution and higher order mainfrom production production and migher order mainfrom production distribution. Numerical Methods [Text 2: Relevant portions of sections 19.2, 19.3, 19.5 and 21.1] (Derivation of formulae not required in this module) Finding roots of equations-Newton-Raphson method. Interpolation-Newton's forward and backward difference formula, Lagrange's interpolation method. Numerical Integration-trapezoidal rule, Simpson's 1/3rd rule. Numerical solution of first order ODE-Euler method, Runge-Kutta fourth order (classical method).	3 3 3 3	20%

QUESTION PAPER PATTERN:

Maximum Marks : 100 Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Any two questions from each part have to be answered.

Course code	Course Name	L-T-P - Credits	Year of
			Introduction
HS200	Business Economics	3-0-0-3	2016
Prerequisite: 1	Nil		

Course Objectives

- To familiarize the prospective engineers with elementary Principles of Economics and Business Economics.
- To acquaint the students with tools and techniques that are useful in their profession in Business Decision Making which will enhance their employability;
- To apply business analysis to the "firm" under different market conditions;
- To apply economic models to examine current economic scenario and evaluate policy options for addressing economic issues
- To gain understanding of some Macroeconomic concepts to improve their ability to understand the business climate;
- To prepare and analyse various business tools like balance sheet, cost benefit analysis and rate of returns at an elementary level

Syllabus

Business Economics - basic concepts, tools and analysis, scarcity and choices, resource allocation, marginal analysis, opportunity costs and production possibility curve. Fundamentals of microeconomics - Demand and Supply Analysis, equilibrium, elasticity, production and production function, cost analysis, break-even analysis and markets. Basics of macroeconomics - the circular flow models, national income analysis, inflation, trade cycles, money and credit, and monetary policy. Business decisions - investment analysis, Capital Budgeting decisions, forecasting techniques and elementary Balance Sheet and taxation, business financing, international investments

Expected outcome.

A student who has undergone this course would be able to

- i. make investment decisions based on capital budgeting methods in alignment with microeconomic and macroeconomic theories.
- ii. able to analyse the profitability of the firm, economy of operation, determination of price under various market situations with good grasp on the effect of trade cycles in business.
- iii. gain knowledge on Monetary theory, measures by RBI in controlling interest rate and emerging concepts like Bit Coin.
- iv. gain knowledge of elementary accounting concepts used for preparing balance sheet and interpretation of balance sheet

Text Books

- 1. Geetika, Piyali Ghosh and Chodhury, Managerial Economics, Tata McGraw Hill, 2015
- 2. Gregory Mankiw, Principles of Macroeconomics, Cengage Learning, 2006.
- 3. M.Kasi Reddy and S.Saraswathi, *Economics and Financial Accounting*. Prentice Hall of India. New Delhi.

References:

- 1. Dornbusch, Fischer and Startz, Macroeconomics, McGraw Hill, 11th edition, 2010.
- 2. Khan M Y, Indian Financial System, Tata McGraw Hill, 7th edition, 2011.
- 3. Samuelson, Managerial Economics, 6th edition, Wiley
- 4. Snyder C and Nicholson W, *Fundamentals of Microeconomics*, Cengage Learning (India), 2010.
- 5. Truett, Managerial Economics: Analysis, Problems, Cases, 8th Edition, Wiley
- 6. Welch, *Economics: Theory and Practice* 7th Edition, Wiley
- 7. Uma Kapila, Indian Economy Since Independence, 26th Edition: A Comprehensive and Critical Analysis of India's Economy, 1947-2015
- 8. C Rangarajan, *Indian Economy, Essays on monetary and finance*, UBS Publishers'Distributors, 1998
- 9. A.Ramachandra Aryasri, *Managerial Economics and Financial Analysis*, Tata McGraw-Hill, New Delhi.
- 10. Dominick Salvatore, *Managerial Economics in Global Economy*, Thomas Western College Publishing, Singapore.
- 11. I.M .Pandey, Financial Management, Vikas Publishing House. New Delhi.
- 12. Dominick Salvatore, *Theory and Problems of Micro Economic Theory*. Tata Mac Graw-Hill, New Delhi.
- 13. T.N.Hajela. Money, Banking and Public Finance. Anne Books. New Delhi.
- 14. G.S.Gupta. Macro Economics-Theory and Applications. Tata Mac Graw-Hill, New Delhi.
- 15. Yogesh, Maheswari, Management Economics, PHI learning, NewDelhi, 2012
- 16. Timothy Taylor, Principles of Economics, 3rd edition, TEXTBOOK MEDIA.
- 17. Varshney and Maheshwari. Managerial Economics. Sultan Chand. New Delhi

Course Plan				
Module	Contents	Hours	Sem. Exam Marks	
I	Business Economics and its role in managerial decision making- meaning-scope-relevance-economic problems-scarcity Vs choice (2 Hrs)-Basic concepts in economics-scarcity, choice, resource allocation- Trade-off-opportunity cost-marginal analysis- marginal utility theory, Law of diminishing marginal utility -production possibility curve (2 Hrs)	4	15%	
П	Basics of Micro Economics I Demand and Supply analysis- equillibrium-elasticity (demand and supply) (3 Hrs.) -Production concepts-average product-marginal product-law of variable proportions- Production function-Cobb Douglas function-problems (3 Hrs.)	6	15%	
	FIRST INTERNAL EXAMINATION			
III	Basics of Micro Economics II Concept of costs-marginal, average, fixed, variable costs-cost curves-shut down point-long run and short run (3 Hrs.)- Break Even Analysis-Problem-Markets-Perfect Competition, Monopoly and Monopolistic Competition, Oligopoly-Cartel and collusion (3 Hrs.).	6	15%	
IV	Basics of Macro Economics - Circular flow of income-two sector and multi-sector models- National Income Concepts-Measurement methods-problems-Inflation, deflation (4 Hrs.)-Trade cycles-Money- stock and flow concept-Quantity theory of money-Fischer's Equation and Cambridge Equation -velocity of circulation of money-credit control methods-SLR, CRR, Open Market Operations-Repo and Reverse Repo rate-emerging concepts in money-bit coin (4 Hrs.).	8	15%	

SECOND INTERNAL EXAMINATION				
V	Business Decisions I -Investment analysis-Capital Budgeting-NPV, IRR, Profitability Index, ARR, Payback Period (5 Hrs.)- Business		20%	
V	decisions under certainty-uncertainty-selection of alternatives-risk and sensitivity- cost benefit analysis-resource management (4 Hrs.).	9		
VI	Business Decisions II Balance sheet preparation-principles and interpretation-forecasting techniques (7 Hrs.)-business financing-sources of capital- Capital and money markets-international financing-FDI, FPI, FII-Basic Principles of taxation-direct tax, indirect tax-GST (2 hrs.).	9	20%	
	END SEMESTED EVAM	V I		

END SEMESTER EXAM

Question Paper Pattern

Max. marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course code	Course Name	L-T-P- Credits	Year of Introduction
HS210	LIFE SKILLS	2-0-2	2016

Prerequisite : Nil Course Objectives

- To develop communication competence in prospective engineers.
- To enable them to convey thoughts and ideas with clarity and focus.
- To develop report writing skills.
- To equip them to face interview & Group Discussion.
- To inculcate critical thinking process.
- To prepare them on problem solving skills.
- To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- To understand team dynamics & effectiveness.
- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- To learn leadership qualities and practice them.

Syllabus

Communication Skill: Introduction to Communication, The Process of Communication, Barriers to Communication, Listening Skills, Writing Skills, Technical Writing, Letter Writing, Job Application, Report Writing, Non-verbal Communication and Body Language, Interview Skills, Group Discussion, Presentation Skills, Technology-based Communication.

Critical Thinking & Problem Solving: Creativity, Lateral thinking, Critical thinking, Multiple Intelligence, Problem Solving, Six thinking hats, Mind Mapping & Analytical Thinking.

Teamwork: Groups, Teams, Group Vs Teams, Team formation process, Stages of Group, Group Dynamics, Managing Team Performance & Team Conflicts.

Ethics, Moral & Professional Values: Human Values, Civic Rights, Engineering Ethics, Engineering as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME, ASCE, IEEE.

Leadership Skills: Leadership, Levels of Leadership, Making of a leader, Types of leadership, Transactions Vs Transformational Leadership, VUCA Leaders, DART Leadership, Leadership Grid & leadership Formulation.

Expected outcome

The students will be able to

- Communicate effectively.
- Make effective presentations.
- Write different types of reports.
- Face interview & group discussion.
- Critically think on a particular problem.
- Solve problems.
- Work in Group & Teams
- Handle Engineering Ethics and Human Values.
- Become an effective leader.

Resource Book:

Life Skills for Engineers, Complied by ICT Academy of Kerala, McGraw Hill Education (India) Private Ltd., 2016

References:

- Barun K. Mitra; (2011), "Personality Development & Soft Skills", First Edition; Oxford Publishers.
- Kalyana; (2015) "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd.
- Larry James (2016); "The First Book of Life Skills"; First Edition; Embassy Books.
- Shalini Verma (2014); "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company
- John C. Maxwell (2014); "The 5 Levels of Leadership", Centre Street, A division of Hachette Book Group Inc.

	Course Plan			
		Hou	rs	Sem.
Module	Contents	L-T	-P	Exam
		L	Р	Marks
	Need for Effective Communication, Levels of communication; Flow of communication; Use of language in communication; Communication networks; Significance of technical communication, Types of barriers; Miscommunication; Noise; Overcoming measures, Listening as an active skill; Types of Listeners; Listening for	2		
	general content; Listening to fill up information; Intensive Listening; Listening for specific information; Developing effective listening skills; Barriers to effective listening skills.		2	
I	Technical Writing: Differences between technical and literary style, Elements of style; Common Errors, Letter Writing: Formal, informal and demi-official letters; business letters, Job Application: Cover letter, Differences between bio-data, CV and Resume, Report Writing: Basics of Report Writing; Structure of a report; Types of reports.		4	luation scheme
	Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language	3		See eva
	Interview Skills: Types of Interviews; Ensuring success in job interviews; Appropriate use of non-verbal communication, Group Discussion: Differences between group discussion and debate; Ensuring success in group discussions, Presentation Skills: Oral presentation and public speaking skills; business presentations, Technology-based Communication: Netiquettes: effective e-mail messages; power-point presentation; enhancing editing skills using computer software.		4	

Π	Need for Creativity in the 21 st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity	2	
	Critical thinking Vs Creative thinking, Functions of Left Brain & Right brain, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence.		2
	Steps in problem solving, Problem Solving Techniques, Problem Solving through Six Thinking Hats, Mind Mapping, Forced Connections.	2	
	Problem Solving strategies, Analytical Thinking and quantitative reasoning expressed in written form, Numeric, symbolic, and graphic reasoning, Solving application problems.		2
III	Introduction to Groups and Teams, Team Composition, Managing Team Performance, Importance of Group, Stages of Group, Group Cycle, Group thinking, getting acquainted, Clarifying expectations.	3	
	Group Problem Solving, Achieving Group Consensus. Group Dynamics techniques, Group vs Team, Team Dynamics, Teams for enhancing productivity, Building & Managing Successful Virtual Teams. Managing Team	3	2
	Working Together in Teams, Team Decision-Making, Team Culture & Power, Team Leader Development.	1	2
IV	Morals, Values and Ethics, Integrity, Work Ethic, Service Learning, Civic Virtue, Respect for Others, Living Peacefully.	3	
	Caring, Sharing, Honesty, Courage, Valuing Time, Cooperation, Commitment, Empathy, Self-Confidence, Character		2
	spirituality, senses of Englicening Etnics, vallety of moral issued, Types of inquiry, moral dilemmas, moral autonomy, Kohlberg's theory, Gilligan's theory, Consensus and controversy, Models of Professional Roles, Theories about right action, Self-interest, customs and religion, application of ethical theories.	3	
	Engineering as experimentation, engineers as responsible experimenters, Codes of ethics, Balanced outlook on.	3	
	The challenger case study, Multinational corporations, Environmental ethics, computer ethics,		2

Weapons development, engineers as managers, consulting engineers, engineers as expert witnesses and advisors, moral leadership, sample code of Ethics like ASME, ASCE, IEEE, Institution of Engineers(India), Indian Institute of Materials Management, Institution of electronics and telecommunication engineers(IETE) India etc		
Introduction, a framework for considering leadership, 4 entrepreneurial and moral leadership vision people selection		
and development, cultural dimensions of leadership, style,		
V Growing as a leader, turnaround leadership, gaining control, trust, managing diverse stakeholders, crisis management	2	
Transformer of a stimulation from the standard back back back back back back back back		
Types of Leadership, Leadership Traits.		
Leadership Styles, VUCA Leadership, DART Leadership,		
Transactional vs Transformational Leaders, Leadership Grid,	2	
Effective Leaders, making of a Leader, Formulate Leadership		

EVALUATION SCHEME

Internal Evaluation

(Conducted by the College)

Total Marks: 100

Part – A

(To be started after completion of Module 1 and to be completed by 30th working day of the semester)

1. Group Discussion – Create groups of about 10 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation is as follows;

(i)	Communication Skills	-	10 marks
(ii)	Subject Clarity	_	10 marks
(iii)	Group Dynamics	-	10 marks
(iv)	Behaviors & Mannerism	s -	10 marks

(Marks: 40)

Part – B

(To be started from 31^{st} working day and to be completed before 60^{th} working day of the semester)

- 2. Presentation Skills Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation is as follows;
- (i) Communication Skills* 10 marks
 (ii) Platform Skills** 10 marks
 (iii) Subject Clarity/Knowledge 10 marks

* Language fluency, auditability, voice modulation, rate of speech, listening, summarizes key learnings etc.

****** Postures/Gestures, Smiles/Expressions, Movements, usage of floor area etc.

Part – C

(To be conducted before the termination of semester)

3. Sample Letter writing or report writing following the guidelines and procedures. Parameters to be used for evaluation is as follows;

(i)	Usage of English & Grammar	-	10 marks	
(ii)	Following the format		10 marks	
(iii)	Content clarity	- 1	10 marks	

(Marks: 30)

Time: 2 hrs.

External Evaluation (Conducted by the University)

Total Marks: 50

Short Answer questions

Part – A

There will be one question from each area (five questions in total). Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows;

- (i) Content Clarity/Subject Knowledge
- (ii) Presentation style
- (iii) Organization of content

Part – B

Case Study

The students will be given a case study with questions at the end the students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows;

- (i) Analyze the case situation
- (ii) Key players/characters of the case
- (iii) Identification of the problem (both major & minor if exists)
- (iv) Bring out alternatives
- (v) Analyze each alternative against the problem
- (vi) Choose the best alternative
- (vii) Implement as solution
- (viii) Conclusion
- (ix) Answer the question at the end of the case

